The Journal of the International Society of Physical and Rehabilitation Medicine

PERSPECTIVE
Year
: 2020  |  Volume : 3  |  Issue : 4  |  Page : 106--111

New perspective on neuromodulation techniques: Breathing-controlled electrical stimulation as an innovative neuromodulation technique for management of neuropathic pain after spinal cord injury


Shengai Li, Argyrios Stampas, Joel E Frontera, Matthew E Davis, Sheng Li 
 Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center; Neurorecovery Research Center, TIRR Memorial Herman Hospital, Houston, TX, USA

Correspondence Address:
Dr. Sheng Li
Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center, Houston, TX; TIRR Memorial Herman Hospital, Houston, TX
USA

Abstract

Neuropathic pain after spinal cord injury is common and debilitating. Several nonpharmacological neuromodulation techniques have been tried with controversial outcomes. A novel intervention called breathing-controlled electrical stimulation (BreEStim) is developed based on discoveries about the systemic effects of voluntary breathing and the physiological interactions with body systems. Recent laboratory research studies are reviewed. The results demonstrated that BreEStim produced effective analgesic effects with the restoration of autonomic dysfunction via central neuromodulatory mechanisms. A case of long-term application of BreEStim highlights its clinical therapeutic potential.



How to cite this article:
Li S, Stampas A, Frontera JE, Davis ME, Li S. New perspective on neuromodulation techniques: Breathing-controlled electrical stimulation as an innovative neuromodulation technique for management of neuropathic pain after spinal cord injury.J Int Soc Phys Rehabil Med 2020;3:106-111


How to cite this URL:
Li S, Stampas A, Frontera JE, Davis ME, Li S. New perspective on neuromodulation techniques: Breathing-controlled electrical stimulation as an innovative neuromodulation technique for management of neuropathic pain after spinal cord injury. J Int Soc Phys Rehabil Med [serial online] 2020 [cited 2021 Jan 17 ];3:106-111
Available from: https://www.jisprm.org/text.asp?2020/3/4/106/300596


Full Text



 Introduction



Neuropathic pain (NP) after spinal cord injury (SCI) is common and debilitating.[1],[2],[3] It is characterized by spontaneous and ongoing pain, described as burning, shooting, prickling or electrical, and/or pain in response to innocuous stimuli (allodynia) and exaggerated pain in response to noxious stimuli (hyperalgesia).[4] About 65–85 percent of people with SCI experience NP, and in about a third of them, the pain is severe.[5] It does not resolve over time, and in some cases, it worsens.[6] NP has increasingly been recognized as an important contributor to suffering, poor rehabilitation outcomes, and reduced quality of life (QoL).[7],[8],[9],[10] Medication fails to provide sufficient relief and has side effects, which makes the search for nonpharmacological interventions important. Several noninvasive neuromodulation techniques via peripheral (e.g., transcutaneous electric nerve stimulation)[11] or central (e.g., transcranial direct current stimulation)[12],[13],[14] electrical stimulation (EStim) have been used. However, their effectiveness is still limited and controversial.[15] A novel neuromodulation technique, breathing-controlled EStim (BreEStim), has been developed. BreEStim has shown promising analgesic effects for NP after SCI. From a neuromodulation point of view, BreEStim is a novel neuromodulatory technique to provide effective analgesic effects for NP after SCI. In this perspective article, we summarize the technique, possible underlying mechanisms, and research findings. A case of long-term application of BreEStim is presented to showcase its clinical application potential.

 The Novel Neuromodulation Technique – Breathing-Controlled Electrical Stimulation



EStim therapy, which uses small electrodes to send electrical currents through the skin to target certain muscle groups or nerves, has a broad range of applications in rehabilitation to achieve functional and therapeutic goals, from spasm relaxation to pain management. However, traditional EStim functions more locally and the effect is short lasting. Based on discoveries of the systemic effects of voluntary breathing and the physiological interactions among body systems during voluntary breathing, we have invented a protocol called breathing-controlled EStim (BreEStim) to augment the effects of EStim in people with NP.[16] Briefly, in the BreEStim treatment [Figure 1] Adopted from Hu et al.[17], a painful single pulse of electrical stimulation is triggered and delivered to the target area (usually median nerve at the wrist) when the airflow rate of each individual breath reaches a certain threshold during forceful voluntary inhalation (usually set at 40% of maximal airflow to ensure forceful voluntary inhalation).[16] The users themselves control the intensity of EStim to increase the intensity gradually to a painful but tolerable level. As compared to conventional EStim, the novelty of BreEStim is that EStim is delivered only during deep inhalation.{Figure 1}

 Analgesic Effects of Breathing-Controlled Electrical Stimulation



We have tested BreEStim in a series of studies, comparing EStim only or breathing only. We compared the electrical pain thresholds between BreEStim and EStim after one session of treatment in pain-free healthy controls in a crossover design.[18] All subjects received both BreEStim and EStim to the median nerve at the wrist of the dominant side in a random order with at least 1 week apart. The intensity and dose of EStim were comparable between BreEStim and EStim. After BreEstim treatment, we observed an increase in the electrical pain threshold in the bilateral hands but no change in either hand after the EStim treatment. A similar pattern of results was observed when the ulnar nerve was stimulated during the BreEStim treatment.[19] We also tested pain-free healthy controls with BreEStim versus breathing only using the same experimental design.[17] The results consistently showed electrical pain threshold increased only with BreEStim treatment. Subsequently, we further compared the analgesic effects between EStim and BreEStim in a cohort of SCI subjects (paraplegia or tetraplegia) with chronic NP.[20] The results confirmed that BreEStim had a better and longer-lasting analgesic effect as compared to EStim. Collectively, these results suggest that BreEStim has systemic de-sensitization effects for analgesia.

 Possible Mechanisms of Breathing-Controlled Electrical Stimulation



The analgesic effect of BreEStim is attributed to intrinsic physiological interactions between the respiratory and sensory/pain systems that are activated and integrated by the coupling of EStim during this particular window of voluntary inhalation. Distinctly different from autonomic breathing, during voluntary breathing, such as talking and singing, humans voluntarily suppress autonomic breathing by activating the respiratory centers of the brain.[21],[22] These cortical and subcortical areas that are activated during voluntary breathing are also involved with muscle tone, posture, mood, pain, speech, heartbeats, and other functions. For example, the insula and anterior cingulate cortex (ACC) are activated during voluntary breathing, among other brain areas, according to brain imaging studies.[23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33],[34] The ACC and the insula are also known to selectively process the aversive quality of noxious stimulation[35],[36] but do not influence the sensation of the stimulation.[37] When aversive stimulation is delivered during activation of the insular cortex, item-specific anterograde amnesia to the stimulation occurs.[38] In other words, the memory of the noxious stimulation is impaired or “forgotten” after BreEStim, i.e., noxious stimulation is felt less “noxious” or normal, resulting in analgesic effects of BreEStim. Findings of concomitant changes of autonomic function with induced analgesia further support the response of the insula and ACC during BreEStim (details are described below). Taken together, BreEStim likely integrates several internal coping mechanisms,[39] including (1) activation of internal pain modulation mechanisms; (2) EStim effect; (3) anterograde amnesia of pain stimulation; (4) habilitation of aversive stimuli; and (5) central neuromodulatory mechanisms. As a result, BreEStim increases the pain threshold and pain tolerance, resulting in analgesic effects.

 Central Neuromodulatory Effects of Breathing-Controlled Electrical Stimulation



Voluntary breathing-activated brain areas, such as the insula and ACC, are involved in other networks. The insula and ACC are part of the pain neuromatrix and the central autonomic network as well. Due to shared areas in both pain and central autonomic networks, people demonstrate autonomic responses when anticipating or experiencing pain, for example, skin blood flow changes.[40] It is therefore expected that analgesic effects could be accompanied by modulation of autonomic functions. Heart rate variability (HRV), the physiology variance in the interbeat intervals, is a tool for quantitative assessment of autonomic function.[41] Furthermore, an increasing number of studies have supported HRV as a potential biomarker for pain.[42],[43],[44],[45],[46],[47] Our recent study has shown that people with SCI and NP demonstrated an overall decreased parasympathetic activity as compared to SCI without NP, regardless of the level and severity of the injury.[47]

Recent studies provide the support that BreEStim-induced analgesic effects are accompanied by modulation of the above-mentioned shared pain and autonomic networks. We compared changes in the pain scale (visual analog scale [VAS]) and HRV parameters between BreEStim- and breathing-only treatments in SCI subjects with chronic NP (SCI + NP) in a crossover design.[48] In this study, SCI + NP subjects wore the same facemask during both breathing-only (null) and BreEStim (active) treatments, with surface electrodes placed over the same peripheral nerve. The only difference was that subjects received an EStim in the active treatment, while no electrical stimulus was delivered in the null treatment. The active treatment produced analgesic effects, while no such effects were seen after the null treatment. As shown in [Figure 2], Adopted from Karri et al.[48] pain reduction was accompanied by concomitant increases in NN50 and pNN50. These are HRV parameters that reflect increased parasympathetic function. The results support the association between pain and autonomic networks and BreEStim-induced modulation in these networks. In other words, pain reduction is accompanied by the restoration of autonomic balance in SCI + NP subjects. An interesting set of results were observed when we compared the analgesic effects and associated HRV changes between SCI + NP subjects and pain-free healthy controls after the active BreEStim treatment.[49] As expected, BreEStim produced pain reduction in SCI + NP subjects and increased pain threshold in pain-free healthy controls. Pain reduction in SCI + NP subjects was associated with increased parasympathetic function; however, there were no HRV changes in healthy controls. This study further suggests that the shared areas of pain and autonomic networks had maladaptive plasticity in SCI subjects with chronic NP.[47] Their dysfunction could be modulated by BreEStim.{Figure 2}

 Long-Term Effects of Breathing-Controlled Electrical Stimulation



The long-term analgesic and neuromodulatory effects of BreEStim have been tested in an SCI subject with chronic NP. The SCI subject (MC) was a 59-year-old male with tetraplegia for 40 years (C5 ASIA C). MC had constant below-the-level NP, primarily in the left lower back area. Despite the fact that MC took scheduled pain medications as prescribed by his treating physician, his pain level remained at 5–6 throughout the day. Using the same BreEStim protocol,[20],[48],[49],[50] MC received daily weekday BreEStim treatment for 10 sessions and was then followed for 3 weeks. Throughout the treatment and follow-up period, the subject was explicitly instructed to maintain the pain regime (same medications, dose, and frequency). VAS scores were recorded daily during the BreEStim treatment and the 3-week follow-up period. Electrocardiogram (ECG) recordings for HRV analysis were obtained before and 30 min after the BreEStim treatments on session 1 (day 1) and session 10 (day 12). ECG recordings were also obtained during the follow-up visits on postintervention day 5 and day 14. The experimental protocol for ECG recordings and HRV analyses was used from our recent studies.[48],[49]

[Figure 3] displays the daily pain log during the treatment and the follow-up period. During the 1st week, BreEStim had analgesic effects after each session of the treatment. On average, pain scores decreased from 6 to 2. The duration of analgesic effects lasted from 4 h to 23 h with an average of 16 h/day. The patient reported that on day 7, his pain score was 0, which had not happened in his recent memories over the years. His pain level remained low during the second five sessions of treatment except day 10 when MC had a urinary tract infection. It was noted that the global pain intensity remained low (1.5–2) during this period. There was no further change in VAS scores after BreEStim treatment. However, it is noteworthy to point out that his pain level remained at very low levels throughout the whole day during the 2nd week, and the analgesic effects continued for another 7 days. The baseline pain level gradually returned to the pre-BreEStim level.{Figure 3}

[Figure 4] summarizes the neuromodulatory and analgesic effects of 10 sessions of active BreEStim treatments. After the first session of BreEStim, the global pain level decreased from 5 to 1.5. This analgesic effect was paralleled, with an increase in NN50 counts from 1 to 20. At the end of 10 sessions, the pretreatment pain level was low (0.5). Although there was no further decrease in pain level, NN50 counts continue to increase from 17 to 27. During the follow-up period, an increase in VAS scores (from F/U day 5 to F/U day 14) was accompanied by a parallel decrease in NN50 counts. The pain level returned to the pre-EStim baseline at F/U day 14, as did NN50 counts. As previously shown [Figure 2], BreEStim-induced analgesic effects are accompanied with the restoration of parasympathetic activity (increased NN50). Furthermore, this case demonstrates a dynamic pattern of centrally mediated neuromoduatory effect.{Figure 4}

In this case of long-term use of BreEStim, MC tolerated the BreEStim treatment well. MC stated that “before the BreEStim treatment, my back pain severely affected my daily life. Once starting the treatment, the pain is very much manageable.” After five sessions, he had significant pain relief which continued 7 days after completing treatment, resulting in peaceful and relaxing days which otherwise had not been attained. Limitation in this case study is the lack of a control group and measures of analgesic medication use. Further investigations would need to include these elements as well as a disease-specific SCI-QoL survey to quantify improvements.

 Summary



BreEStim is a novel neuromodulation technique. A recent series of studies demonstrate that BreEStim produces effective analgesic effects with the restoration of autonomic dysfunction via central neuromodulatory mechanisms. BreEStim has the potential to be an effective neuromodulation technique for the management of NP after SCI. Further translational research, such as double-blinded clinical trials with additional measures, including QOL surveys, are needed to investigate whether BreEStim can be utilized as a clinical tool for NP management.

Acknowledgment

Research studies were supported in part by grants from Mission Connect, a program of TIRR Foundation, and NIH/NICHD/NCMRR R21HD087128.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain 2017;21:29-44.
2Werhagen L, Budh CN, Hultling C, Molander C. Neuropathic pain after traumatic spinal cord injury--relations to gender, spinal level, completeness, and age at the time of injury. Spinal Cord 2004;42:665-73.
3Finnerup NB. Pain in patients with spinal cord injury. Pain 2013;154: S71-6.
4Bennett MI, Neuropathic pain. New York: Oxford University Press Inc; 2010.
5Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 2003;103:249-57.
6Jensen MP, Kuehn CM, Amtmann D, Cardenas DD. Symptom burden in persons with spinal cord injury. Arch Phys Med Rehabil 2007;88:638-45.
7Norrbrink Budh C, Hultling C, Lundeberg T. Quality of sleep in individuals with spinal cord injury: A comparison between patients with and without pain. Spinal Cord 2005;43:85-95.
8Störmer S, Gerner HJ, Grüninger W, Metzmacher K, Föllinger S, Wienke C, et al. Chronic pain/dysaesthesiae in spinal cord injury patients: Results of a multicentre study. Spinal Cord 1997;35:446-55.
9Jensen MP, Chodroff MJ, Dworkin RH. The impact of neuropathic pain on health-related quality of life: Review and implications. Neurology 2007;68:1178-82.
10Burke D, Fullen BM, Lennon O. Pain profiles in a community dwelling population following spinal cord injury: A national survey. J Spinal Cord Med 2019;42:201-11.
11Norrbrink Budh C, Lundeberg T. Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: A patient perspective. Complement Ther Med 2004;12:189-97.
12Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 2006;122:197-209.
13Boggio PS, Zaghi S, Fregni F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 2009;47:212-7.
14Boggio PS, Zaghi S, Lopes M, Fregni F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 2008;15:1124-30.
15Kotze A, Simpson KH. Stimulation-produced analgesia: Acupuncture, TENS and related techniques. Anaesth Int Care Med 2008;9:29.
16Li S. Breathing-controlled electrical stimulation (BreEStim) for management of neuropathic pain and spasticity. J Vis Exp 2013;71:e50077.
17Hu H, Li S, Li S. Pain modulation effect of breathing-controlled electrical stimulation (BreEStim) is not likely to be mediated by fast and deep voluntary breathing. Sci Rep 2015;5:14228.
18Li S, Berliner JC, Melton DH, Li S. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim) in healthy subjects. PLoS One 2013;8:e70282.
19Li S, Hu T, Beran MA, Li S. Habituation to experimentally induced electrical pain during voluntary-breathing controlled electrical stimulation (BreEStim). PLoS One 2014;9:e104729.
20Li S, Davis M, Frontera JE, Li S. A novel nonpharmacological intervention – Breathing-controlled electrical stimulation for neuropathic pain management after spinal cord injury – A preliminary study. J Pain Res 2016;9:933-40.
21Haouzi P, Chenuel B, Barroche G. Interactions between volitional and automatic breathing during respiratory apraxia. Respir Physiol Neurobiol 2006;152:169-75.
22Guz A. Brain, breathing and breathlessness. Respir Physiol 1997;109:197-204.
23Colebatch JG, Adams L, Murphy K, Martin AJ, Lammertsma AA, Tochon-Danguy HJ, et al. Regional cerebral blood flow during volitional breathing in man. J Physiol 1991;443:91-103.
24Maskill D, Murphy K, Mier A, Owen M, Guz A. Motor cortical representation of the diaphragm in man. J Physiol 1991;443:105-21.
25Ramsay SC, Adams L, Murphy K, Corfield DR, Grootoonk S, Bailey DL, et al. Regional cerebral blood flow during volitional expiration in man: A comparison with volitional inspiration. J Physiol 1993;461:85-101.
26Fink GR, Adams L, Watson JD, Innes JA, Wuyam B, Kobayashi I, et al. Hyperpnoea during and immediately after exercise in man: Evidence of motor cortical involvement. J Physiol 1995;489 (Pt 3):663-75.
27Macey KE, Macey PM, Woo MA, Harper RK, Alger JR, Keens TG, et al. fMRI signal changes in response to forced expiratory loading in congenital central hypoventilation syndrome. J Appl Physiol (1985) 2004;97:1897-907.
28Macey PM, Macey KE, Henderson LA, Alger JR, Frysinger RC, Woo MA, et al. Functional magnetic resonance imaging responses to expiratory loading in obstructive sleep apnea. Respir Physiol Neurobiol 2003;138:275-90.
29Evans KC, Shea SA, Saykin AJ. Functional MRI localisation of central nervous system regions associated with volitional inspiration in humans. J Physiol 1999;520 Pt 2:383-92.
30Smejkal V, Druga R, Tintera J. Control of breathing and brain activation in human subjects seen by functional magnetic resonance imaging. Physiol Res 1999;48:21-5.
31Smejkal V, Druga R, Tintera J. Brain activation during volitional control of breathing. Physiol Res 2000;49:659-63.
32Mazzone SB, L McLennan, AE McGovern, GF Egan, and MJ Farrell. Representation of capsaicin-evoked Urge-to-cough in the human brain using functional magnetic resonance imaging. Am J Respir Crit Care Med 2007;176:327-32.
33Evans KC. Cortico-limbic circuitry and the airways: Insights from functional neuroimaging of respiratory afferents and efferents. Biol Psychol 2010;84:13-25.
34Evans KC, Dougherty DD, Schmid AM, Scannell E, McCallister A, Benson H, et al. Modulation of spontaneous breathing via limbic/paralimbic-bulbar circuitry: An event-related fMRI study. NeuroImage 2009;47:961.
35Von Leupoldt A, Sommer T, Kegat S, Eippert F, Baumann HJ, Klose H, et al. Down-regulation of insular cortex responses to dyspnea and pain in asthma. Am J Res Crit Care Med 2009;180:232.
36LaGraize SC, Borzan J, Peng YB, Fuchs PN. Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp Neurol 2006;197:22-30.
37LaBuda CJ, Fuchs PN. Attenuation of negative pain affect produced by unilateral spinal nerve injury in the rat following anterior cingulate cortex activation. Neuroscience 2005;136:311-22.
38Stehberg J, Levy D, Zangen A. Impairment of aversive memory reconsolidation by localized intracranial electrical stimulation. Eur J Neurosci 2009;29:964-9.
39Li S, Melton DH, Berliner JC. Breathing-controlled electrical stimulation (BreEStim) could modify the affective component of neuropathic pain after amputation: A case report. J Pain Res 2012;5:71-5.
40Seifert F, Schuberth N, De Col R, Peltz E, Nickel FT, Maihöfner C. Brain activity during sympathetic response in anticipation and experience of pain. Hum Brain Mapp 2013;34:1768-82.
41Sztajzel J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 2004;134:514-22.
42Storella RJ, Shi Y, O'Connor DM, Pharo GH, JT Abrams, and J Levitt. Relief of chronic pain may be accompanied by an increase in a measure of heart rate variability. Anesth Analg 1999;89:448-50.
43Terkelsen AJ, Mølgaard H, Hansen J, Finnerup NB, Krøner K, Jensen TS. Heart rate variability in complex regional pain syndrome during rest and mental and orthostatic stress. Anesthesiology 2012;116:133-46.
44Sarabia Cachadiña E, Granados García P, Tonon Da Luz SC, Goya Esteban R, Barquero Pérez O, Naranjo Orellana J, et al. Heart rate variability and phantom pain in male amputees: Application of linear and nonlinear methods. J Rehabil Res Dev 2013;50:449-54.
45Koenig J, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF. Heart rate variability and experimentally induced pain in healthy adults: A systematic review. Eur J Pain 2014;18:301-14.
46Tracy LM, Ioannou L, Baker KS, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016;157:7-29.
47Karri J, Zhang L, Li S, Chen YT, Stampas A, Li S. Heart rate variability: A novel modality for diagnosing neuropathic pain after spinal cord injury. Front Physiol 2017;8:495.
48Karri J, Li S, Zhang L, Chen YT, Stampas A, Li S. Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res 2018;11:2331-41.
49Karri J, Li S, Chen YT, Stampas A, Li S. Observations of autonomic variability following central neuromodulation for chronic neuropathic pain in spinal cord injury. Neuromodulation 2019 Jun 14:10.1111/ner.12979. doi: 10.1111/ner.12979. Epub ahead of print. PMID: 31199549; PMCID: PMC6911028.
50Li S, Stampas A, Frontera J, Davis M, Li S. Combined transcranial direct current stimulation and breathing-controlled electrical stimulation for management of neuropathic pain after spinal cord injury. J Rehabil Med 2018;50:814-20.